home *** CD-ROM | disk | FTP | other *** search
- /****************************************************************************
- * poly.c
- *
- * This module implements the code for general 3 variable polynomial shapes
- *
- * This file was written by Alexander Enzmann. He wrote the code for
- * 4th - 6th order shapes and generously provided us these enhancements.
- *
- * from Persistence of Vision(tm) Ray Tracer
- * Copyright 1996 Persistence of Vision Team
- *---------------------------------------------------------------------------
- * NOTICE: This source code file is provided so that users may experiment
- * with enhancements to POV-Ray and to port the software to platforms other
- * than those supported by the POV-Ray Team. There are strict rules under
- * which you are permitted to use this file. The rules are in the file
- * named POVLEGAL.DOC which should be distributed with this file. If
- * POVLEGAL.DOC is not available or for more info please contact the POV-Ray
- * Team Coordinator by leaving a message in CompuServe's Graphics Developer's
- * Forum. The latest version of POV-Ray may be found there as well.
- *
- * This program is based on the popular DKB raytracer version 2.12.
- * DKBTrace was originally written by David K. Buck.
- * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
- *
- *****************************************************************************/
-
- #include "frame.h"
- #include "vector.h"
- #include "povproto.h"
- #include "bbox.h"
- #include "polysolv.h"
- #include "matrices.h"
- #include "objects.h"
- #include "poly.h"
- #include "povray.h"
-
- /*
- * Basic form of a quartic equation:
- *
- * a00*x^4 + a01*x^3*y + a02*x^3*z + a03*x^3 + a04*x^2*y^2 +
- * a05*x^2*y*z+ a06*x^2*y + a07*x^2*z^2 + a08*x^2*z + a09*x^2 +
- * a10*x*y^3 + a11*x*y^2*z + a12*x*y^2 + a13*x*y*z^2 + a14*x*y*z +
- * a15*x*y + a16*x*z^3 + a17*x*z^2 + a18*x*z + a19*x + a20*y^4 +
- * a21*y^3*z + a22*y^3 + a23*y^2*z^2 + a24*y^2*z + a25*y^2 + a26*y*z^3 +
- * a27*y*z^2 + a28*y*z + a29*y + a30*z^4 + a31*z^3 + a32*z^2 + a33*z + a34
- *
- */
-
-
-
- /*****************************************************************************
- * Local preprocessor defines
- ******************************************************************************/
-
- #define DEPTH_TOLERANCE 1.0e-4
- #define INSIDE_TOLERANCE 1.0e-4
- #define ROOT_TOLERANCE 1.0e-4
- #define COEFF_LIMIT 1.0e-20
- #define BINOMSIZE 40
-
-
-
- /*****************************************************************************
- * Local typedefs
- ******************************************************************************/
-
-
-
- /*****************************************************************************
- * Static functions
- ******************************************************************************/
-
- static int intersect PARAMS((RAY *Ray, int Order, DBL *Coeffs, int Sturm_Flag,
- DBL *Depths));
- static void normal0 PARAMS((VECTOR Result, int Order, DBL *Coeffs,
- VECTOR IPoint));
- static void normal1 PARAMS((VECTOR Result, int Order, DBL *Coeffs,
- VECTOR IPoint));
- static DBL inside PARAMS((VECTOR IPoint, int Order, DBL *Coeffs));
- static int intersect_linear PARAMS((RAY *ray, DBL *Coeffs, DBL *Depths));
- static int intersect_quadratic PARAMS((RAY *ray, DBL *Coeffs, DBL *Depths));
- static int factor_out PARAMS((int n, int i, int *c, int *s));
- static long binomial PARAMS((int n, int r));
- static void factor1 PARAMS((int n, int *c, int *s));
-
- /* unused
- static DBL evaluate_linear PARAMS((VECTOR P, DBL *a));
- static DBL evaluate_quadratic PARAMS((VECTOR P, DBL *a));
- */
-
- static int All_Poly_Intersections PARAMS((OBJECT *Object, RAY *Ray, ISTACK *Depth_Stack));
- static int Inside_Poly PARAMS((VECTOR IPoint, OBJECT *Object));
- static void Poly_Normal PARAMS((VECTOR Result, OBJECT *Object, INTERSECTION *Inter));
- static void *Copy_Poly PARAMS((OBJECT *Object));
- static void Translate_Poly PARAMS((OBJECT *Object, VECTOR Vector, TRANSFORM *Trans));
- static void Rotate_Poly PARAMS((OBJECT *Object, VECTOR Vector, TRANSFORM *Trans));
- static void Scale_Poly PARAMS((OBJECT *Object, VECTOR Vector, TRANSFORM *Trans));
- static void Transform_Poly PARAMS((OBJECT *Object, TRANSFORM *Trans));
- static void Invert_Poly PARAMS((OBJECT *Object));
- static void Destroy_Poly PARAMS((OBJECT *Object));
-
- /*****************************************************************************
- * Local variables
- ******************************************************************************/
-
- METHODS Poly_Methods =
- {
- All_Poly_Intersections,
- Inside_Poly, Poly_Normal, Copy_Poly,
- Translate_Poly, Rotate_Poly,
- Scale_Poly, Transform_Poly, Invert_Poly, Destroy_Poly
- };
-
-
-
- /* The following table contains the binomial coefficients up to 15 */
-
- static int binomials[15][15] =
- {
- {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 0, 0, 0, 0, 0},
- {1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 0},
- {1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0},
- {1, 10, 45,120, 210, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0},
- {1, 11, 55,165, 330, 462, 462, 330, 165, 55, 11, 1, 0, 0, 0},
- {1, 12, 66,220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 0, 0},
- {1, 13, 78,286, 715,1287,1716,1716,1287, 715, 286, 78, 13, 1, 0},
- {1, 14, 91,364,1001,2002,3003,3432,3003,2002,1001,364, 91, 14, 1}
- };
-
- static DBL eqn_v[3][MAX_ORDER+1], eqn_vt[3][MAX_ORDER+1];
-
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * All_Poly_Intersections
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static int All_Poly_Intersections(Object, Ray, Depth_Stack)
- OBJECT *Object;
- RAY *Ray;
- ISTACK *Depth_Stack;
- {
- POLY *Poly = (POLY *) Object;
- DBL Depths[MAX_ORDER], len;
- VECTOR IPoint;
- int cnt, i, j, Intersection_Found, same_root;
- RAY New_Ray;
-
- /* Transform the ray into the polynomial's space */
-
- MInvTransPoint(New_Ray.Initial, Ray->Initial, Poly->Trans);
- MInvTransDirection(New_Ray.Direction, Ray->Direction, Poly->Trans);
-
- VLength(len, New_Ray.Direction);
- VInverseScaleEq(New_Ray.Direction, len);
-
- Intersection_Found = FALSE;
-
- Increase_Counter(stats[Ray_Poly_Tests]);
-
- switch (Poly->Order)
- {
- case 1:
-
- cnt = intersect_linear(&New_Ray, Poly->Coeffs, Depths);
-
- break;
-
- case 2:
-
- cnt = intersect_quadratic(&New_Ray, Poly->Coeffs, Depths);
-
- break;
-
- default:
-
- cnt = intersect(&New_Ray, Poly->Order, Poly->Coeffs, Test_Flag(Poly, STURM_FLAG), Depths);
- }
-
- if (cnt > 0)
- {
- Increase_Counter(stats[Ray_Poly_Tests_Succeeded]);
- }
-
- for (i = 0; i < cnt; i++)
- {
- if (Depths[i] > DEPTH_TOLERANCE)
- {
- same_root = FALSE;
-
- for (j = 0; j < i; j++)
- {
- if (Depths[i] == Depths[j])
- {
- same_root = TRUE;
-
- break;
- }
- }
-
- if (!same_root)
- {
- VEvaluateRay(IPoint, New_Ray.Initial, Depths[i], New_Ray.Direction);
-
- /* Transform the point into world space */
-
- MTransPoint(IPoint, IPoint, Poly->Trans);
-
- if (Point_In_Clip(IPoint, Object->Clip))
- {
- push_entry(Depths[i] / len,IPoint,Object,Depth_Stack);
-
- Intersection_Found = TRUE;
- }
- }
- }
- }
-
- return (Intersection_Found);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * evaluate_linear
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- /* For speedup of low order polynomials, expand out the terms
- involved in evaluating the poly. */
- /* unused
- static DBL evaluate_linear(P, a)
- VECTOR P;
- DBL *a;
- {
- return(a[0] * P[X]) + (a[1] * P[Y]) + (a[2] * P[Z]) + a[3];
- }
- */
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * evaluate_quadratic
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- /*
- static DBL evaluate_quadratic(P, a)
- VECTOR P;
- DBL *a;
- {
- DBL x, y, z;
-
- x = P[X];
- y = P[Y];
- z = P[Z];
-
- return(a[0] * x * x + a[1] * x * y + a[2] * x * z +
- a[3] * x + a[4] * y * y + a[5] * y * z +
- a[6] * y + a[7] * z * z + a[8] * z + a[9]);
- }
- */
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * factor_out
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Remove all factors of i from n.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static int factor_out(n, i, c, s)
- int n, i, *c, *s;
- {
- while (!(n % i))
- {
- n /= i;
-
- s[(*c)++] = i;
- }
-
- return(n);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * factor1
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Find all prime factors of n. (Note that n must be less than 2^15.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void factor1(n, c, s)
- int n, *c, *s;
- {
- int i,k;
-
- /* First factor out any 2s. */
-
- n = factor_out(n, 2, c, s);
-
- /* Now any odd factors. */
-
- k = (int)sqrt((DBL)n) + 1;
-
- for (i = 3; (n > 1) && (i <= k); i += 2)
- {
- if (!(n % i))
- {
- n = factor_out(n, i, c, s);
- k = (int)sqrt((DBL)n)+1;
- }
- }
-
- if (n > 1)
- {
- s[(*c)++] = n;
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * binomial
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Calculate the binomial coefficent of n, r.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static long binomial(n, r)
- int n, r;
- {
- int h,i,j,k,l;
- unsigned long result;
- static int stack1[BINOMSIZE], stack2[BINOMSIZE];
-
- if ((n < 0) || (r < 0) || (r > n))
- {
- result = 0L;
- }
- else
- {
- if (r == n)
- {
- result = 1L;
- }
- else
- {
- if ((r < 15) && (n < 15))
- {
- result = (long)binomials[n][r];
- }
- else
- {
- j = 0;
-
- for (i = r + 1; i <= n; i++)
- {
- stack1[j++] = i;
- }
-
- for (i = 2; i <= (n-r); i++)
- {
- h = 0;
-
- factor1(i, &h, stack2);
-
- for (k = 0; k < h; k++)
- {
- for (l = 0; l < j; l++)
- {
- if (!(stack1[l] % stack2[k]))
- {
- stack1[l] /= stack2[k];
-
- goto l1;
- }
- }
- }
-
- /* Error if we get here */
- /* Debug_Info("Failed to factor\n");*/
- l1:;
- }
-
- result = 1;
-
- for (i = 0; i < j; i++)
- {
- result *= stack1[i];
- }
- }
- }
- }
-
- return(result);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * inside
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static DBL inside(IPoint, Order, Coeffs)
- VECTOR IPoint;
- int Order;
- DBL *Coeffs;
- {
- DBL x[MAX_ORDER+1], y[MAX_ORDER+1];
- DBL z[MAX_ORDER+1], c, Result;
- int i, j, k, term;
-
- x[0] = 1.0; y[0] = 1.0; z[0] = 1.0;
- x[1] = IPoint[X]; y[1] = IPoint[Y]; z[1] = IPoint[Z];
-
- for (i = 2; i <= Order; i++)
- {
- x[i] = x[1] * x[i-1];
- y[i] = y[1] * y[i-1];
- z[i] = z[1] * z[i-1];
- }
-
- Result = 0.0;
-
- term = 0;
-
- for (i = Order; i >= 0; i--)
- {
- for (j=Order-i;j>=0;j--)
- {
- for (k=Order-(i+j);k>=0;k--)
- {
- if ((c = Coeffs[term]) != 0.0)
- {
- Result += c * x[i] * y[j] * z[k];
- }
- term++;
- }
- }
- }
-
- return(Result);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * intersect
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Intersection of a ray and an arbitrary polynomial function.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static int intersect(ray, Order, Coeffs, Sturm_Flag, Depths)
- RAY *ray;
- int Order, Sturm_Flag;
- DBL *Coeffs, *Depths;
- {
- DBL eqn[MAX_ORDER+1];
- DBL t[3][MAX_ORDER+1];
- VECTOR P, D;
- DBL val;
- int h, i, j, k, i1, j1, k1, term;
- int offset;
-
- /* First we calculate the values of the individual powers
- of x, y, and z as they are represented by the ray */
-
- Assign_Vector(P,ray->Initial);
- Assign_Vector(D,ray->Direction);
-
- for (i = 0; i < 3; i++)
- {
- eqn_v[i][0] = 1.0;
- eqn_vt[i][0] = 1.0;
- }
-
- eqn_v[0][1] = P[X];
- eqn_v[1][1] = P[Y];
- eqn_v[2][1] = P[Z];
-
- eqn_vt[0][1] = D[X];
- eqn_vt[1][1] = D[Y];
- eqn_vt[2][1] = D[Z];
-
- for (i = 2; i <= Order; i++)
- {
- for (j=0;j<3;j++)
- {
- eqn_v[j][i] = eqn_v[j][1] * eqn_v[j][i-1];
- eqn_vt[j][i] = eqn_vt[j][1] * eqn_vt[j][i-1];
- }
- }
-
- for (i = 0; i <= Order; i++)
- {
- eqn[i] = 0.0;
- }
-
- /* Now walk through the terms of the polynomial. As we go
- we substitute the ray equation for each of the variables. */
-
- term = 0;
-
- for (i = Order; i >= 0; i--)
- {
- for (h = 0; h <= i; h++)
- {
- t[0][h] = binomial(i, h) * eqn_vt[0][i-h] * eqn_v[0][h];
- }
-
- for (j = Order-i; j >= 0; j--)
- {
- for (h = 0; h <= j; h++)
- {
- t[1][h] = binomial(j, h) * eqn_vt[1][j-h] * eqn_v[1][h];
- }
-
- for (k = Order-(i+j); k >= 0; k--)
- {
- if (Coeffs[term] != 0)
- {
- for (h = 0; h <= k; h++)
- {
- t[2][h] = binomial(k, h) * eqn_vt[2][k-h] * eqn_v[2][h];
- }
-
- /* Multiply together the three polynomials. */
-
- offset = Order - (i + j + k);
-
- for (i1 = 0; i1 <= i; i1++)
- {
- for (j1=0;j1<=j;j1++)
- {
- for (k1=0;k1<=k;k1++)
- {
- h = offset + i1 + j1 + k1;
- val = Coeffs[term];
- val *= t[0][i1];
- val *= t[1][j1];
- val *= t[2][k1];
- eqn[h] += val;
- }
- }
- }
- }
-
- term++;
- }
- }
- }
-
- for (i = 0, j = Order; i <= Order; i++)
- {
- if (eqn[i] != 0.0)
- {
- break;
- }
- else
- {
- j--;
- }
- }
-
- if (j > 1)
- {
- return(Solve_Polynomial(j, &eqn[i], Depths, Sturm_Flag, ROOT_TOLERANCE));
- }
- else
- {
- return(0);
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * intersect_linear
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Intersection of a ray and a quadratic.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static int intersect_linear(ray, Coeffs, Depths)
- RAY *ray;
- DBL *Coeffs, *Depths;
- {
- DBL t0, t1, *a = Coeffs;
-
- t0 = a[0] * ray->Initial[X] + a[1] * ray->Initial[Y] + a[2] * ray->Initial[Z];
- t1 = a[0] * ray->Direction[X] + a[1] * ray->Direction[Y] +
-
- a[2] * ray->Direction[Z];
-
- if (fabs(t1) < EPSILON)
- {
- return(0);
- }
-
- Depths[0] = -(a[3] + t0) / t1;
-
- return(1);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * intersect_quadratic
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Intersection of a ray and a quadratic.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static int intersect_quadratic(ray, Coeffs, Depths)
- RAY *ray;
- DBL *Coeffs, *Depths;
- {
- DBL x, y, z, x2, y2, z2;
- DBL xx, yy, zz, xx2, yy2, zz2;
- DBL *a, ac, bc, cc, d, t;
-
- x = ray->Initial[X];
- y = ray->Initial[Y];
- z = ray->Initial[Z];
-
- xx = ray->Direction[X];
- yy = ray->Direction[Y];
- zz = ray->Direction[Z];
-
- x2 = x * x; y2 = y * y; z2 = z * z;
- xx2 = xx * xx; yy2 = yy * yy; zz2 = zz * zz;
-
- a = Coeffs;
-
- /*
- * Determine the coefficients of t^n, where the line is represented
- * as (x,y,z) + (xx,yy,zz)*t.
- */
-
- ac = (a[0]*xx2 + a[1]*xx*yy + a[2]*xx*zz + a[4]*yy2 + a[5]*yy*zz + a[7]*zz2);
-
- bc = (2*a[0]*x*xx + a[1]*(x*yy + xx*y) + a[2]*(x*zz + xx*z) +
- a[3]*xx + 2*a[4]*y*yy + a[5]*(y*zz + yy*z) + a[6]*yy +
- 2*a[7]*z*zz + a[8]*zz);
-
- cc = a[0]*x2 + a[1]*x*y + a[2]*x*z + a[3]*x + a[4]*y2 +
- a[5]*y*z + a[6]*y + a[7]*z2 + a[8]*z + a[9];
-
- if (fabs(ac) < COEFF_LIMIT)
- {
- if (fabs(bc) < COEFF_LIMIT)
- {
- return(0);
- }
-
- Depths[0] = -cc / bc;
-
- return(1);
- }
-
- /*
- * Solve the quadratic formula & return results that are
- * within the correct interval.
- */
-
- d = bc * bc - 4.0 * ac * cc;
-
- if (d < 0.0)
- {
- return(0);
- }
-
- d = sqrt(d);
-
- bc = -bc;
-
- t = (1.0 / (2.0 * ac));
- Depths[0] = (bc + d) * t;
- Depths[1] = (bc - d) * t;
-
- /*
- t = 2.0 * ac;
- Depths[0] = (bc + d) / t;
- Depths[1] = (bc - d) / t;
- */
-
- return(2);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * normal0
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Normal to a polynomial (used for polynomials with order > 4).
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void normal0(Result, Order, Coeffs, IPoint)
- VECTOR Result;
- int Order;
- DBL *Coeffs;
- VECTOR IPoint;
- {
- int i, j, k, term;
- DBL val, *a, x[MAX_ORDER+1], y[MAX_ORDER+1], z[MAX_ORDER+1];
-
- x[0] = 1.0;
- y[0] = 1.0;
- z[0] = 1.0;
-
- x[1] = IPoint[X];
- y[1] = IPoint[Y];
- z[1] = IPoint[Z];
-
- for (i = 2; i <= Order; i++)
- {
- x[i] = IPoint[X] * x[i-1];
- y[i] = IPoint[Y] * y[i-1];
- z[i] = IPoint[Z] * z[i-1];
- }
-
- a = Coeffs;
-
- term = 0;
-
- Make_Vector(Result, 0.0, 0.0, 0.0);
-
- for (i = Order; i >= 0; i--)
- {
- for (j = Order-i; j >= 0; j--)
- {
- for (k = Order-(i+j); k >= 0; k--)
- {
- if (i >= 1)
- {
- val = x[i-1] * y[j] * z[k];
- Result[X] += i * a[term] * val;
- }
-
- if (j >= 1)
- {
- val = x[i] * y[j-1] * z[k];
- Result[Y] += j * a[term] * val;
- }
-
- if (k >= 1)
- {
- val = x[i] * y[j] * z[k-1];
- Result[Z] += k * a[term] * val;
- }
-
- term++;
- }
- }
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * nromal1
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Normal to a polynomial (for polynomials of order <= 4).
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void normal1(Result, Order, Coeffs, IPoint)
- VECTOR Result;
- int Order;
- DBL *Coeffs;
- VECTOR IPoint;
- {
- DBL *a, x, y, z, x2, y2, z2, x3, y3, z3;
-
- a = Coeffs;
-
- x = IPoint[X];
- y = IPoint[Y];
- z = IPoint[Z];
-
- switch (Order)
- {
- case 1:
-
- /* Linear partial derivatives */
-
- Make_Vector(Result, a[0], a[1], a[2])
-
- break;
-
- case 2:
-
- /* Quadratic partial derivatives */
-
- Result[X] = 2*a[0]*x+a[1]*y+a[2]*z+a[3];
- Result[Y] = a[1]*x+2*a[4]*y+a[5]*z+a[6];
- Result[Z] = a[2]*x+a[5]*y+2*a[7]*z+a[8];
-
- break;
-
- case 3:
-
- x2 = x * x; y2 = y * y; z2 = z * z;
-
- /* Cubic partial derivatives */
-
- Result[X] = 3*a[0]*x2 + 2*x*(a[1]*y + a[2]*z + a[3]) + a[4]*y2 +
- y*(a[5]*z + a[6]) + a[7]*z2 + a[8]*z + a[9];
- Result[Y] = a[1]*x2 + x*(2*a[4]*y + a[5]*z + a[6]) + 3*a[10]*y2 +
- 2*y*(a[11]*z + a[12]) + a[13]*z2 + a[14]*z + a[15];
- Result[Z] = a[2]*x2 + x*(a[5]*y + 2*a[7]*z + a[8]) + a[11]*y2 +
- y*(2*a[13]*z + a[14]) + 3*a[16]*z2 + 2*a[17]*z + a[18];
-
- break;
-
- case 4:
-
- /* Quartic partial derivatives */
-
- x2 = x * x; y2 = y * y; z2 = z * z;
- x3 = x * x2; y3 = y * y2; z3 = z * z2;
-
- Result[X] = 4*a[ 0]*x3+3*x2*(a[ 1]*y+a[ 2]*z+a[ 3])+
- 2*x*(a[ 4]*y2+y*(a[ 5]*z+a[ 6])+a[ 7]*z2+a[ 8]*z+a[ 9])+
- a[10]*y3+y2*(a[11]*z+a[12])+y*(a[13]*z2+a[14]*z+a[15])+
- a[16]*z3+a[17]*z2+a[18]*z+a[19];
- Result[Y] = a[ 1]*x3+x2*(2*a[ 4]*y+a[ 5]*z+a[ 6])+
- x*(3*a[10]*y2+2*y*(a[11]*z+a[12])+a[13]*z2+a[14]*z+a[15])+
- 4*a[20]*y3+3*y2*(a[21]*z+a[22])+2*y*(a[23]*z2+a[24]*z+a[25])+
- a[26]*z3+a[27]*z2+a[28]*z+a[29];
- Result[Z] = a[ 2]*x3+x2*(a[ 5]*y+2*a[ 7]*z+a[ 8])+
- x*(a[11]*y2+y*(2*a[13]*z+a[14])+3*a[16]*z2+2*a[17]*z+a[18])+
- a[21]*y3+y2*(2*a[23]*z+a[24])+y*(3*a[26]*z2+2*a[27]*z+a[28])+
- 4*a[30]*z3+3*a[31]*z2+2*a[32]*z+a[33];
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Inside_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static int Inside_Poly (IPoint, Object)
- VECTOR IPoint;
- OBJECT *Object;
- {
- VECTOR New_Point;
- DBL Result;
-
- /* Transform the point into polynomial's space */
-
- MInvTransPoint(New_Point, IPoint, ((POLY *)Object)->Trans);
-
- Result = inside(New_Point, ((POLY *)Object)->Order, ((POLY *)Object)->Coeffs);
-
- if (Result < INSIDE_TOLERANCE)
- {
- return ((int)(!Test_Flag(Object, INVERTED_FLAG)));
- }
- else
- {
- return ((int)Test_Flag(Object, INVERTED_FLAG));
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Poly_Normal
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Normal to a polynomial.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Poly_Normal(Result, Object, Inter)
- OBJECT *Object;
- VECTOR Result;
- INTERSECTION *Inter;
- {
- DBL val;
- VECTOR New_Point;
- POLY *Shape = (POLY *)Object;
-
- /* Transform the point into the polynomials space. */
-
- MInvTransPoint(New_Point, Inter->IPoint, Shape->Trans);
-
- if (((POLY *)Object)->Order > 4)
- {
- normal0(Result, Shape->Order, Shape->Coeffs, New_Point);
- }
- else
- {
- normal1(Result, Shape->Order, Shape->Coeffs, New_Point);
- }
-
- /* Transform back to world space. */
-
- MTransNormal(Result, Result, Shape->Trans);
-
- /* Normalize (accounting for the possibility of a 0 length normal). */
-
- VDot(val, Result, Result);
-
- if (val > 0.0)
- {
- val = 1.0 / sqrt(val);
-
- VScaleEq(Result, val);
- }
- else
- {
- Make_Vector(Result, 1.0, 0.0, 0.0)
- }
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Translate_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Translate_Poly (Object, Vector, Trans)
- OBJECT *Object;
- VECTOR Vector;
- TRANSFORM *Trans;
- {
- Transform_Poly(Object, Trans);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Rotate_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Rotate_Poly (Object, Vector, Trans)
- OBJECT *Object;
- VECTOR Vector;
- TRANSFORM *Trans;
- {
- Transform_Poly(Object, Trans);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Scale_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Scale_Poly (Object, Vector, Trans)
- OBJECT *Object;
- VECTOR Vector;
- TRANSFORM *Trans;
- {
- Transform_Poly(Object, Trans);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Transform_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Transform_Poly(Object,Trans)
- OBJECT *Object;
- TRANSFORM *Trans;
- {
- Compose_Transforms(((POLY *)Object)->Trans, Trans);
-
- Compute_Poly_BBox((POLY *)Object);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Invert_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Invert_Poly(Object)
- OBJECT *Object;
- {
- Invert_Flag(Object, INVERTED_FLAG);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Create_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- POLY *Create_Poly(Order)
- int Order;
- {
- POLY *New;
- int i;
-
- New = (POLY *)POV_MALLOC(sizeof (POLY), "poly");
-
- INIT_OBJECT_FIELDS(New,POLY_OBJECT, &Poly_Methods);
-
- New->Order = Order;
-
- New->Trans = Create_Transform();
-
- New->Coeffs = (DBL *)POV_MALLOC(term_counts(Order) * sizeof(DBL), "coefficients for POLY");
-
- for (i = 0; i < term_counts(Order); i++)
- {
- New->Coeffs[i] = 0.0;
- }
-
- return(New);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Copy_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * Make a copy of a polynomial object.
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void *Copy_Poly(Object)
- OBJECT *Object;
- {
- POLY *New;
- int i;
-
- New = Create_Poly (((POLY *)Object)->Order);
-
- /* Get rid of transform created in Create_Poly. */
-
- Destroy_Transform(New->Trans);
-
- Copy_Flag(New, Object, STURM_FLAG);
- Copy_Flag(New, Object, INVERTED_FLAG);
-
- New->Trans = Copy_Transform(((POLY *)Object)->Trans);
-
- for (i = 0; i < term_counts(New->Order); i++)
- {
- New->Coeffs[i] = ((POLY *)Object)->Coeffs[i];
- }
-
- return (New);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Destroy_Poly
- *
- * INPUT
- *
- * OUTPUT
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Alexander Enzmann
- *
- * DESCRIPTION
- *
- * -
- *
- * CHANGES
- *
- * -
- *
- ******************************************************************************/
-
- static void Destroy_Poly(Object)
- OBJECT *Object;
- {
- Destroy_Transform (((POLY *)Object)->Trans);
-
- POV_FREE (((POLY *)Object)->Coeffs);
-
- POV_FREE (Object);
- }
-
-
-
- /*****************************************************************************
- *
- * FUNCTION
- *
- * Compute_Poly_BBox
- *
- * INPUT
- *
- * Poly - Poly
- *
- * OUTPUT
- *
- * Poly
- *
- * RETURNS
- *
- * AUTHOR
- *
- * Dieter Bayer
- *
- * DESCRIPTION
- *
- * Calculate the bounding box of a poly.
- *
- * CHANGES
- *
- * Aug 1994 : Creation.
- *
- ******************************************************************************/
-
- void Compute_Poly_BBox(Poly)
- POLY *Poly;
- {
- Make_BBox(Poly->BBox, -BOUND_HUGE/2, -BOUND_HUGE/2, -BOUND_HUGE/2, BOUND_HUGE, BOUND_HUGE, BOUND_HUGE);
-
- if (Poly->Clip != NULL)
- {
- Poly->BBox = Poly->Clip->BBox;
- }
- }
-
-